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ABSTRACT
This paper presents Galerkin approximations for soluticns of two
dimensional interface problems By solving corresponding boundary integral
equations. These are obtained by simple layer potential operators only.
Due to the strong ellipticity of the integral equations the Galerkin pro-
cedure converges with optimal order. Smoothness of the given data implies

high convergence rates for the lavers.
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1. Introduction

Recently for the problem of the‘scattering of time harmonic electromagnetic
fields by metallic obstacles, the eddy current problem, Hariharan and MacCamy [3],
obtained two-dimensional results using boundary integral equations in the context
of classical function spaces. They studied the interface problem (PB) for
the potential ¢ of the electric field induced by a thin wire carrying a
pericdic current., They obtained a system of boundary integral equations whose
solution determines the solution of (PB). The goals of this paper are (i}
to solve the same system with less regularity assumptions in appropriate Sobolev
spaces and (ii) to obtain theoretical error estimates for the Galerkin method
when the system of boundary integral equations is solved approximately with a
regular finite elements method. A corresponding numerical Galerkin-collocation
method based on ocur theory will be reported elsewhere.

We shall begin with a brief description of the physical problem. Let @

2 3.

+
be a simply connected bounded region in R.2 and of - R Here, & is to

represent air and { cross section of a wetallic cylinder in the x-y
plane (see Figure 1). We suppose there are incident electric and magnetic

fields EO, go, and that all fields E, H are transverse magnetic and time

harmonic with a single angular frequency w. This means that, with a proper

li + Hzﬁ where E, Hl, H2 are fu-c-

choice of x, y, z axes, E = Ek, H=1H
tions of x and y only. Our underlying assumptions are that the conductivity of
air is zero and displacement current can be neglected in metal. g and H

satisfy Maxwell's equations in Q" and Q and are subject to the interface
condition that the tangential components of E and H are continuous across

I' the boundary of Q. Then, with appropriate scaling, we have the following

problem:



curl E=H , curl H=1ia " E in
M) curl E=H , curl H= R E in @

nxXE, nxH continuous across I.

-~ ~

n denotes the exterior normal to  and o, B are non-dimensional constants.
+
We suppose there is a wire parallel to the z-axis through X.0 1 Q
carrying a periodic current I(t) = Re{IOe_lwt}, IO € € . Then the incidant
0 0

field E°, H due to the wire will have the form

~

B(x,y,2,8) = RelT ) 95Cx,y) & &™™%)

0
EI (}E,Y9z’t)

3, > _ 93¢, 7, -iwt
Re{IO(ayB i _B%B j)e }

with the Hankel function of first kind and of order zero

i (1)

(1.1) g(x) =-7 H T Blx-x D), x = ().

The fields EO, H0 satisfy Maxwell's equations (M) in Gﬁ'{xo} (air).

~ -~

If we seek the total fields E, H in the same form with ¢ replaced by

B

the solution ¢ of the interface problem (PB)' then E, H satisfv the

remaining Maxwell's equations and are automaticallv divergence free and

0

E-E, H-H satisfy a radiation condition. Thus, altogether the two-
dimensional eddy current problem for a conducting cvlinder is reduced

to the interface problem:
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where ¢, g% € CO(I') and ¢)-¢B & CZ(Q+) v CO(I‘) satisfying Sommerfeld's
radiation condition. Here q>8 as in (1.1) represents the potential induced

by the wire (located at a point x, € aty.

Note that in (PB) the parameters a,f are real numbers, £ being suf-

ficiently small, namely ocz = 0(10), 8-2 = 0(10_21) (see [2]).
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Figure 1.

Therefore, instead of (PB) we consider:

2
Find ¥ € C7 Q) u cZ @~ {x,h) U c%(r) such that,
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where Y, % € CO(T) and w—wo € C2(§2+) U CO(F), Y being

bounded at infinity.

It was shown in [2] that with

" I S N
bo(x) = o= loglx-x4l,



the solution ¢ of (PB) converges pointwise to the solution § of (PO)

as B =+ 0 at any fixed X € ]Rz\{xo}. Furthermore by [2], [3] problem

(P can be transformed into a coupled system of integral equations on

o’
the boundary I by the use of simple layer potentials, only. Thus, the
solution Y of (PO) was constructed by continuous densities f and g

on I' (see [2]), namely:

i L, -
- 4£f(Z)HO (Vi OL|§ Zl)dsz’ }~<€ Q .

(1.2) Y(x) =
X . ) .
2 ). g(z)loglrf-zldsy + P+ C x0T,

where Lbo is given as above and C € C, arbitrary. The regularity assump-
tions that 1, %% € CO(T) and VU(«~) being bounded yield a coupled system

of integral equations on T.

( Va(f) - wo = Vo(g) + C ’

|
feds,

(1) -1
’ r

311)0
3g + No(g) + 5=

\—%f + NOL(f)

In (I) for x€T and f € CO(T) we have

~

(

Va(f)gz - % j;f(z)Hél) (/_ioclic—zl)dsy ,

1
VoB)x: = 5= [£(p) log|x-ylds, ,

(1.3) < T
)
Na(f)§: = a_n; Vaf(§)

~

_i 9 T
4 J;f(z) an ho (/1UL|}~< Z[)dsy R

-2 =L .
No Bz = g5 Vol (@) = fr,f@ o toglx-yldsy
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In [2 ] it is proved that the more general system

Vo) = Vi) - c=h; ,

(I%) gds = a ,
)

(-%+Na)f - (3+¥)g=h, ,

is uniquely solvable for given (hl’hZ’a) € Cl(T) X CO(T) Xx R with
solution (f,g,c) € CO(F) X CO(F) X ¢ yielding the existence and unique-
ness of the solution of (I). The proof was performed by converting (I%)
into an uncoupled system of Fredholm integral equations of the second kind
for the unknown densities f,g € CO(F).

In the following we solve (I) under less regularity assumptions in
appropriate Sobelev spaces. Also we obtain the proof of thecretical error
estimates for the Galerkin method when the‘system (I) of boundary integrals
is solved approximately with regular finite elements on TI. éonsidering (1)
in Sobolev spaces it turns out that the system (I) is strongly elliptic in
the sense of [17], i.e., it satisfies a G&rding's inequality. Therefore,
the Galerkin approximation converges for mesh size h-0 to the exact
solution of (I) with optimal order due to [14]. Furthermore, we want to
mention that exterior interface problems in this context are solved with

variational methods employing nonlocal boundary conditioms in [9], [10].

2. Unique Solvability of the Integral Equations in Sobolev Spaces

First we consider the system (I*) for data given in Sobolev spaces on T.

Then the operators involved have the following mapping properties.

it >



Lemma 2.1: Let T € Cz, 2 > |s| + 2. Then for any s € R the operators

given in (1.3) are bounded mappings as follows:

(2.1) v 85 ~ B

(2.2) v, BS(D) > By

(2.3) N BS(D) > gt -lsl =2 gy

(2.4) Ng: H3(D) > gt (@ - 1sl=-2) 1y

Proof: For (2.1) we use the expansion of the kernel
(2.5) -+ Hél)(z) == logz +y + 0(z%logz), v € C.

Thus with a smoothing operator R we can write
vV =V_.+R ,
o

and application of the Fourier transform F shows that Vu and VO have

the same principal symbol, namely

- 1 . 1
= -} ]il = Fz—>g(2n logz) .

U(Va) = G(VO)
Hence, Va and VO are pseudo-differential operators of order -1 yielding

the proposed properties (2.1), (2.2) (see [17]1, [71).

For (2.4) we note that NO is just the operator adjoint to the double
layer potential and therefore it has a kernel k(s,t) € CQ-Z(PX ') dimplying
the desired smoothness (2.4) (see [16, Lemma A.1l, p. 3091).

For (2.3) we use that
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R(f)x: = Jt(y

r

is a pseudo-differential operator of order-3 ([15]). On the other hand the

remaining term in (2.5) gives the same contribution as the adjoint of the

double layer potential. Thus (2.3) follows from (2.4).

For the solvability of (I*) the existence of the inverse of an auxiliary
problem is crucial which comes from the exterior Dirichlet problem. Here we
remark that the result of the following lemma is also proved in [5] and for

Holder spaces in [6].

Lemma 2.2: For any given (h,a) € HS(T) x R, s > 1, there exists exactly

one solution (g,c) € HS_I(F) x ¢ of

(2.6) Va(g) + ¢ =, J’gds= a.
’ T
kel il nl+g‘ hal N ~ . . - . T 1 4
Proof: For (h,a) € C () * R, %>0, it is shown in [6] that (2.5) has a

unique solution in Ca(F) X ¢, provided the condition that the mapping
radius of I 1is not equal to one. It is shown in [2] that for

(h,a) € Cl(T) x IR  (2.6) has a unique solution in CO(T) X ¢ without
this condition. We first give this proof in Holder spaces. This is

done in two steps.

First, there exists exactly one solution O’YO) € C (') x R satis-
fying
(2.7) Vo (£5) = Y J;fods = 1.
Furthermore for any h € Cl-Fu (T) there exists exactly one solution fp € CQ(F)
of
(2.8) Vo(fp) = h + Fl(h) s

where the functional Fl(h) is given bv



(2.9) r () = %frvo(fp)(o)do - frh(o)dc, L: = length of T

and O 1is the arc length.

o} . .
The uniqueness and existence of fp € ¢ (') was shown by differentiating

(2.8) with respect to the arc length. Then (2.8) becomes

£ (y)
(2.10) Hf + Rf = @’ Hf P = p.v. _]:_f_t_ ds .
P p s P 2m T sx—sy y

-~ ~

which is a singular integral equation with the Hilbert kernel plus a smooth
remainder.
Upon applying the Hilbert transform, equation (2.10) becomes a Fredholm

integral equation of second kind for fp, since for any fp € LZ(F)
(2.11) H(pr) = —fp (see [12]).

Thus we have

dh
= —_—
(I-I-C)fp H ds °

with a compact operator C on Hs_l(F). Now, using the results of

Muskhelishvili [11, p. 118 ff.] the solution of (2.10) can be represented as

(2.12) f (x) = p-V-f( L + 10,y B(wrds, = ),
p ~ 1'! SX_Sy ~ o~ dS ~ Z

with a smooth kernel r(+,°) depending only on the regularity of T.
Now the form (2.9) of Tl(h) is easily obtained by inserting (2.12) in-
to (2.8) and integrating over T.

For h ¢ HS(F) obviously %E elf—l(F). The operator H 1is a singular

integral operator of Cauchy type and therefore a pseudo-differential operator
of order zero [8]. Therefore by density, the solution fp of (2.12) belongs to

By, s> 1.




Finally with the solutions fO’ fp of (2.7) and (2.8), respectively,

the solution (g,c) of (2.6) is given by

(2.13) g = fp + Afo ,
with
(2.14) A =a —ffpds,
T
and
(2.15) c = —(Fl(h)4-XYO).

Now we are in the position to formulate the main result of this section:

Theorem 2.3: For s € R, s > 1, and for any given
(hl’hZ’a) € HS(T) X Hs—l(T) x TR the system (I*) has a unique solution

(f.g,0) € B7L(D) x 2%7H() x ¢.
Proof: In (I*) let us set

(2.16) h: = Va(f) - hl,

1 € HS(F). Then by Lemma 2.2 there exists

for any f € 5~ (') and for any h

1

exactly one solution (g,c) of (2.6) which coincides with the first two
equations in (I*). Due to the form (2.13) ¢ ETHS—l(T) is given explicitly

by

(2.17) g = A(h): = M(h) + A(h)fo.
Therefore with (2.16) the equation (2.17) reads
(2.18) g = D(f) - A<h1)'

where

(2.19) D(f) : = A(Vm(f)) = M(Vu(f)) + A(Vq(f)—hl)fo.
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Thus, after all, g and ¢ given by (2.13) and (2.15), respectively, give
the solution of the first two equations of (I*) in terms of £, hl and a.
Now we can uncouple the system (I*) by inserting the explicit form (2.18) of

g into the third equation of (I*), and we obtain

(2.20) -3f + Na(f) = 2(D(f) - A(hl))i-NO(Df) - NO( A(hl)) + h,.

Due to Lemma 2.1 and the Rellich embedding theorem the operators Nu

and NOD are compact in Hs—l(r) since U - defined by (2.18) and (2.12) -
is bounded in HSTL(T).
Unfortunately, in order for D(f) to be given by (2.19) we have to

insert the derivative of the Hankel function (2.5) into (2.12). According

to (2.11) we obtain
(2.21) D(F) = £ + R (£) + W(E),

+
where R  is a smooth operator. With W(f) we denote terms corresponding

(1)
N

to the asymptotic expansion of H X"Yl) for small ’x - yi. It turns

out in [ 2, p. 63, ££f] that the kernel k(s,t) of W behaves as

(%g EIOREICH ')logbg(s) - x(0)|ds,

lx(s) - x(9) |

%
P s - t

r

and therefore, it behaves as

k(s,t) = p.v.-/l"g'%(s)-&(o)! ds,
y

s -t

and thus

WE) (x(s)) = Jk(s,)E(E)dE,
r

which is the kernel of HVO, this composition is a pseudo-difrerential opera-

tor of order-l because H has the symbol o(H) = sgn& and o(VO) = E:%T;

hence HV,f € S(T) for f€ g3y,




=11~

So finally, with (2.21) the equation (2.20) turns out to be a Fredholm

equation of the second kind for the unknown density f'€'H§_l(T), namely:

(2.22) (I+-Cl)f = Sl(hl’hZ)

where Cl is a compact operator in HS_l

-1 . -
and h2€ n° (T) obviously Sl(hl,hz) belongs to H° l(I‘); furthermore

(T). For given h€ 1S (T)

Sl(O,O) = 0, see [2].

Using potential theory it is shown in [ 2,p. 66,ff] that I + C is

1
injective due to the uniqueness of the original interface problem (PO).
Thus (I‘I-Cl)—1 exists and is a bounded operator in HS—I(F).

Therefore inserting now the explicitly given solution f € HS-I(T) of
(2.22) into the third equation of (I*) we obtain immediately
(2.23) (Iﬁ-ZNO)g = Sz(hl’hZ)’
which again is a Fredholm equation of the second kind for g € Hs-l(T)
due to (2.4). Again as above, potential theory shows that (2.23) is
uniquely solvable.
Remark 2.4. Note that we have shown in the proof above that there holds
the a-priori estimates with arbitrary constants Cl’ C2 >0
(2.24) I £ <opfliedl o+ lny )
15 (m) 1S (T) 171 ()
(2.25) I gl < Cy (linyl + Iny |l )
857 (r) 1S (T) 1571 (r)
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Also, by the Fredholm property of the equations (2.22), (2.23) there
holds a Gérding's inequality which is crucial for the convergence of the

Galerkin approximation [14].

Lemma 2.5: For all (f,g) € 551 (r) x N, s > 1, s € R, there holds

the inequalities

<@+, > E]% - k(D)
L2(r) L2 ¢
(2.26)
i 2
<I+2N.)g,g> > sl - k. (g,3),
077 L2y by ¢

where ki(',') (i=1,2) 1is a compact bilinear form on LZ(T) X LZ(F)-

The proof is obvious since the compactness of kl(',°) is implied bv the
- smoothness of Cl and the compactness of k, (+,*) 1is implied by the smooth-

ness of NO.

3. The Galerkin Method for the Integral Equations

In this section we formulate the constructive solution of the system

I+¢C 0 f S, (h,,h,)
Gl ( 1 )()=<112)’
0 I+2N,/ \¢g 5,(hy,hy)
with Galerkin's procedure using one-dimensional regular finite element spaces
Sﬁ’k: = Sﬁ’k X S;’k Cc Hk(F) X Hk(T) = :Hk, k > 0, an integer, having the

convergence property (3.3) and the inverse property (3.4) (see [1]). Due to

a result by Hildebrandt and Wienholtz [4] the stability of the Galerkin operator
(3.7) follows from Garding's inequality (2.26). Thus, asymptotic error esti-
mates with optimal order are valid for the Galerkin procedure corresponding to

(3.1) (see [14]).
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In the following we abbreviate (3.1) as

(3.2) BU = S,  with U= (2) e 5N x 85Ny = 457L
Then we assume for the components:
a) For any v € H (') there exists a v € stok with t > r and a

h

constant C > 0 independent of h and v such that for q < min{k,r}

(3.3) | v-7| < cn Y vl .
: 14 HY(T)

b) For q < r, k>r there exists a constant M > 0 independent of

h such that for all u€ S;’k
(3.4) lfﬁl’r < th—r” ul|

" (T) 1#(T)

Note that the parameter in Sﬁ’k have the following meaning:

i) h, 0 < h < 1, is a parameter of mesh width,
ii) t-1 denotes the degree of the piecewise polynomials used as basic
functions,

iii) k describes the conformity of the finite elements, i.e.

t,k

5h

c 5 [1].
Together with the G%rding's inequality (2.26) this is sufficient to derive
asymptotic error estimates in Sobolev norms for the Galerkin solution of the

following problem:

) € sbk ¢ Hk such that for all V: = (v,d) € sﬁ’k

Find U, : = (f h

h h’%h

(3.5) <BU, ,V> = <BU,V> = <S,V> .

h’
L2(ry L2 L2(ry
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where L2(T): = LZ(T) x L2(r) and where U = (f,g) € HS™1 15 the exact

solution of (3.2). More explicitly (3.5) reads

<(I+CHf L, x> = <(I+C)Hf,x> = <S.,x> ,
1’°h*Z Lz(r) 1772 Lz(r) 1’4 Lz(r)
(3.6)
<(I+2N.)g ,0> = <(I+2N,)g,¢> = <§,,¢> ,
0’ "h’x Lz(r) 0’&°x Lz(r) 277 Lz(r)

where S = (81’52) € Hs-l is the given right hand side in (3.1).

Theorem 3.1: Let t > 1, 0 < h < 1. Then the Galerkin operator

(3.7) 6yl = (£,8) > U, = (f,8):L5(M) ~ L°(D),

defined by (3.5) is uniformly bounded independent of h. Moreover, we

have the error estimates for 0 < T < r

(3.8) |u-u < cn Ul

| <
T HE (T)

where the constanct C 1is independent of h, U and Uh‘
Proof: Due to Garding's inequality (2.26) and the injectivity
of the original system (3.1) a general result by Hildebrandt and Wienholtz

[4] shows that the Galerkin solution U of (3.5) exists, is unique and

h

converges to the exact solution U for h = 0. Furthermore there exists

a constant C > 0 independent of h such that

(3.9) ool , < clul, .
L™() L= ()

Using a technique by Nitsche [13] and the properties (3.3), (3.4) we obtain

with (3.9) the desired estimate (3.8). This is shown by choosing an arbi-

trary element U € Sﬁ’k and using the projection property
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for any U€ S;’k of Gy Thus

lu-ul <l v-cuu+c u-0

HY(T) HT ()

iA

| u- 1] + | G (u-1v)|
H' (1) B HY (T

ch™ | ull +un | G (E-1)])

HE (D) L2y

I

Now we use the uniformly boundedness (3.9) of the Galerkin operator G

and can estimate further as follows.

lv-rc,l < ch T + 807 v-t .
) HE (D) L2 ()

Remark 3.2: Obviously the estimate (3.8) holds also for the components it-
self due to the G%rding's inequalities (2.26) and the uncoupled form (3.1).

So for example we have

(3.10) | £-£ | ch®l | £l
B2 0 us1ry

[N

IA

b,

eS| n, | + 1 n, |
1 ws 275571y

1

due to the a priori estimate (2.24).
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For T €CoE, €50 there holds

byt = Uy = log|x(s) - xol € 7D, by = ;819 < ).
Thus choosing s~1 = 24+ in (3.10) yields
le-gll, < o
L=
Remark 3.3: Thus we have constructed Galerkin approximations of the

unknown densities f,g using the boundary element method. Hence, obviously
approximations for the solution Y of the interface problem (PO) can
be obtained by inserting the approximation of the densities into the single

layer potential representations (1.2).

Remark 3.4: Inequality (3.10) clearly indicates the order of convergence
depends on the smoothness of boundary data hl, h2. In our context of eddy
current problems smoothness of the data is given by smoothness of the boundary.

Thus the order of convergence of Galerkin's approximation is easily identified

with the smoothness of the boundary.
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